Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation.

نویسندگان

  • Jing Li
  • Gillian W Hooker
  • G Shirleen Roeder
چکیده

In budding yeast, at least 10 proteins are required for formation of the double-strand breaks (DSBs) that initiate meiotic recombination. Spo11 is the enzyme responsible for cleaving DNA and is found in a complex that also contains Ski8, Rec102, and Rec104. The Mre11/Rad50/Xrs2 complex is required for both DSB formation and DSB processing. In this article we investigate the functions of the remaining three proteins--Mer2, Mei4, and Rec114--with particular emphasis on Mer2. The Mer2 protein is present in vegetative cells, but it increases in abundance and becomes phosphorylated specifically during meiotic prophase. Mer2 localizes to distinct foci on meiotic chromosomes, with foci maximally abundant prior to the formation of synaptonemal complex. If DSB formation is blocked (e.g., by a spo11 mutation), dephosphorylation of Mer2 and its dissociation from chromosomes are delayed. We have also found that the Mei4 and Rec114 proteins localize to foci on chromosomes and these foci partially colocalize with each other and with Mer2. Furthermore, the three proteins co-immunoprecipitate. Mer2 does not show significant colocalization with Mre11 or Rec102 and Mer2 does not co-immunoprecipitate with Rec102. We propose that Mer2, Mei4, and Rec114 form a distinct complex required for DSB formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tethering recombination initiation proteins in Saccharomyces cerevisiae promotes double strand break formation.

Meiotic recombination in Saccharomyces cerevisiae is initiated by the creation of DNA double strand breaks (DSBs), an event requiring 10 recombination initiation proteins. Published data indicate that these 10 proteins form three main interaction subgroups [(Spo11-Rec102-Rec104-Ski8), (Rec114-Rec107-Mei4), and (Mre11-Rad50-Xrs2)], but certain components from each subgroup may also interact. Alt...

متن کامل

Spo11-Accessory Proteins Link Double-Strand Break Sites to the Chromosome Axis in Early Meiotic Recombination

Meiotic recombination between homologous chromosomes initiates via programmed DNA double-strand breaks (DSBs), generated by complexes comprising Spo11 transesterase plus accessory proteins. DSBs arise concomitantly with the development of axial chromosome structures, where the coalescence of axis sites produces linear arrays of chromatin loops. Recombining DNA sequences map to loops, but are ul...

متن کامل

Coordination of the initiation of recombination and the reductional division in meiosis in Saccharomyces cerevisiae.

Early exchange (EE) genes are required for the initiation of meiotic recombination in Saccharomyces cerevisiae. Cells with mutations in several EE genes undergo an earlier reductional division (MI), which suggests that the initiation of meiotic recombination is involved in determining proper timing of the division. The different effects of null mutations on the timing of reductional division al...

متن کامل

Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts.

During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces...

متن کامل

Break to Make a Connection

Meiosis is the cell division program utilized by most sexually reproducing organisms as a strategy to produce haploid gametes (i.e., sperm and eggs) from diploid parental cells. As suggested by its name, which stems from the Greek word meaning ‘‘to diminish or reduce’’, meiosis reduces the chromosome number by half. This is accomplished by following a single round of DNA replication with two co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 173 4  شماره 

صفحات  -

تاریخ انتشار 2006